Tel: +61 8 9423 3200

ABN 32 127 026 528 Nedlands WA 6909 Fax: +61 8 9389 8327

ASX ANNOUNCEMENT

4 June 2013

COMPANY SNAPSHOT

LODESTAR MINERALS LIMITED 32 127 026 528

CONTACT DETAILS

Bill Clayton, Managing Director +61 8 9481 5455

Principal Office

Level 2. 83 Havelock Street West Perth, WA 6005

Registered Corporate Office Level 2, 55 Carrington Street Nedlands, WA 6009

PO Box 985 Nedlands, WA, 6909

admin@lodestarminerals.com.au

www.lodestarminerals.com.au

CAPITAL STRUCTURE

Shares on Issue: 222,233,215 (LSR)

Options on Issue:

4,750,000 (Unlisted)

ASX: LSR

PROJECTS

Peak Hill – Doolgunna: Base metals, gold

Kimberley:

Nickel, copper, PGM's

Significant Gold Discovery at Contessa

HIGHLIGHTS

- > 83 aircore holes now completed, with anomalous gold extending over 750 metres strike.
- Latest assays include:

LNR656 -21 metres at 3.01 g/t Au from 40m

4 metres at 1.24 g/t Au from 51m LNR651 -

4 metres at 3.12 g/t Au from 60m and

LNR659 -2 metres at 1.69 g/t Au from 51m

2 metres at 1.21 g/t Au from 104m LNR660 -

2 metres at 1.71 g/t Au from LNR673 -

3 metres at 6.26 g/t Au from 68m LNR674 -

- > Bedrock gold system open along strike in both directions.
- > Further drilling planned following review of latest results.

Lodestar Minerals Limited (ASX: LSR) ("Lodestar" or "the Company") advises that additional significant gold intercepts have been achieved in aircore drilling at the Contessa Prospect on Lodestar's Neds Creek tenements, 170 kilometres north of Meekatharra, Western Australia (Figure 1).

Figure 1 Location Plan showing gold prospects (red dots) on E52/2456.

Ten traverses of drilling have now been completed over an area of 740 by 400 metres, with sections approximately 80 metres apart, and holes 20 - 50 metres apart on section (see Figure 2 and Schedule 1 for hole locations).

Recent drilling targeted extensions to gold intercepts reported on 18th March 2013 (LSR: ASX announcement of 18th March 2013) including:

- 5m at 6.6g/t Au from 55m
- o 10m at 5.6g/t Au from 55m
- o 10m at 1.2g/t Au from 50m and
- o 15m at 3.1g/t Au from 40m

in 5 metre composite samples from first pass drilling at Contessa.

Drill Results

Gold mineralisation occurs associated with quartz veins in Archaean metamorphosed sediments and mafic rocks adjacent to the margin of an Archaean granite intrusive. The host sequence extends over a strike distance of 10 kilometres within E52/2456, and is defined by small outcrops and aeromagnetic anomalies that run parallel to the granite contact.

The gold mineralisation is concentrated near the base of complete oxidation (Figures 3 to 5).

Drill samples for assay were collected as 5 metre composites above 40 metres depth, and as individual 1 metre samples below 40 metres.

Significant intercepts at a 1 g/t gold cut-off, with up to 3 metres of internal dilution, are as follows:

Hole	Easting	Northing	Depth (m)	Azimuth	Dip	From	Length	Au (g/t)			
LNR649	787984	7192286	104	310	-60	83	1	1.49			
LNR650	788021	7192252	98	310	-60	49	1	1.62			
						53	1	2.63			
						76	1	1.21			
						79	1	1.07			
LNR651	788057	7192222	107	310	-60	51	4	1.24			
						60	4	3.12			
				Incl	luding 1 m	netre at 8.	01 g/t Au	from 60m			
						90	1	1.09			
						99	2	2.32			
LNR652	788096	7192188	86	310	-60	68	1	1.55			
LNR656	788185	7192242	98	310	-60	40	21	3.01			
			Inclu	ıding 4 me	etres at 1.	86 g/t Au	from 40 m	etres and			
				4 me	etres at 5.	18 g/t Au ַ	from 47 m	etres and			
				3 me			from 53 m				
					1 metre	at 13.1 g/	t Au from .	59 metres			
LNR659	788162	7192340	103	310	-60	51	2	1.69			
LNR660	788200	7192308	119	310	-60	104	2	1.21			
LNR661	788241	7192281	95	310	-60	79	1	1.67			
LNR667	788456	7192303	80	310	-60	46	1	4.07			
LNR672	788452	7192417	78	310	-60	72	1	1.03			
LNR673	788485	7192386	74	310	-60	63	1	2.22			
						68	1	2.61			
LNR674	788526	7192350	97	310	-60	68	3	6.26			
	Including 1 metre at 10.6 g/t Au from 68 metres										

Table 1 Contessa Drilling - Gold Intercepts greater than 1g/t Au. Hole coordinates MGA94 Zone 50.

Detailed geological mapping and sampling of the prospective sequence between the Contessa and Brumby Prospects is underway. Further drilling will be planned following a review of the Contessa drilling results and integration of the results of surface exploration sampling.

Geochemically anomalous gold in bedrock was encountered on all drill traverses. The gold system remains open along strike in both directions, and down dip.

Discussion of the Significance of the Drill Results

Three holes on Section 69700N (Figure 4) intersected significant mineralisation (10m at 1.2 g/t Au, 21m at 3.0 g/t Au and 15m at 3.1 g/t Au), covering 75 metres on section.

The nearest drill sections are 60 metres to the grid north and 100 metres to the grid south, and on both these sections significant gold anomalism was encountered.

This area represents an excellent target, with potential for a significant bedrock discovery beneath the oxide mineralisation and also adjacent to the section where mineralisation may project closer to the surface.

The Contessa gold system extends beyond the central sections, and based on geochemical anomalism in end-of-hole samples, it continues outside of the drilled area. Previous scout drilling by Lodestar encountered gold anomalism 1.6 kilometres to the grid south; it is likely that this mineralisation is an extension of the Contessa system that has not been tested methodically by drilling. The Brumby mineralisation 4.5 kilometres to the west of Contessa, where the granite contact position remains open, is also interpreted as being part of the Contessa gold mineralising system.

Ten kilometres of greenstone stratigraphy on Lodestar's ground has had practically no historic exploration for gold and represents a previously unrecognised extension of the Baumgarten Greenstone Belt, which hosts historic gold occurrences to the east of Lodestar's tenements. Lodestar's recent exploration has doubled the extent of this greenstone belt, and the drilling at Contessa has confirmed its gold potential.

Commenting on the drill results, Lodestar managing director Bill Clayton said the gold mineralisation intersected at Contessa represented a significant new gold discovery.

"We are very encouraged by the tenor and extent of these early drill results and we are optimistic that further exploration may lead to additional success," he said.

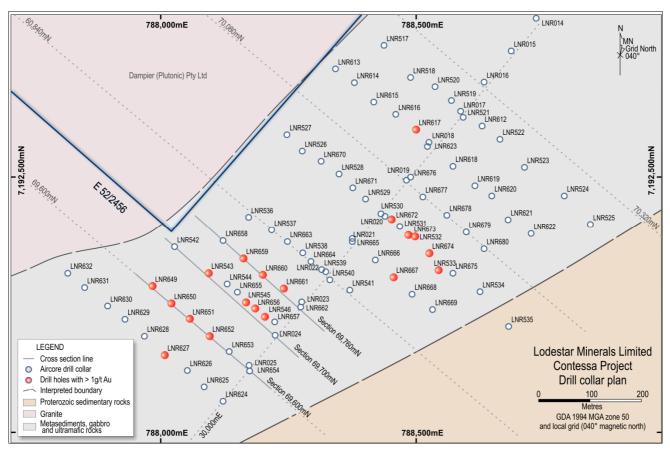


Figure 2 Contessa Drill Collar Location Plan

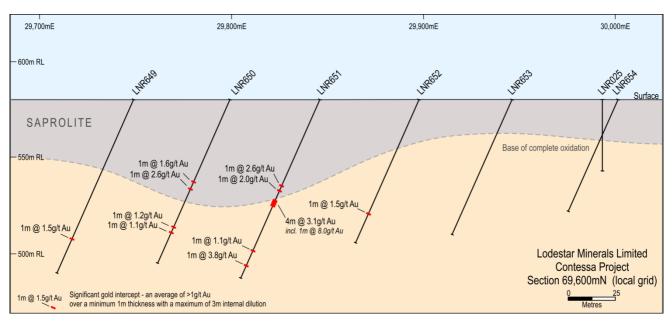


Figure 3 Contessa Prospect Drill Section 69600N

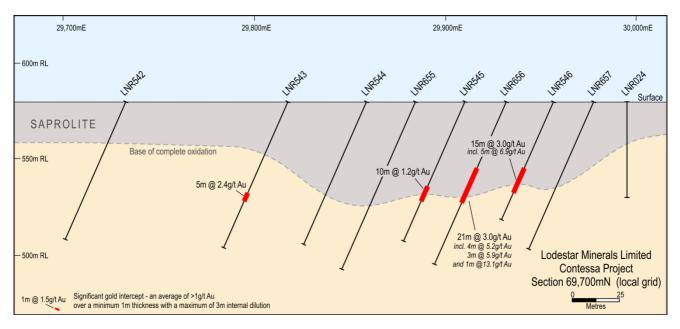


Figure 4 Contessa Prospect Drill Section 69700N

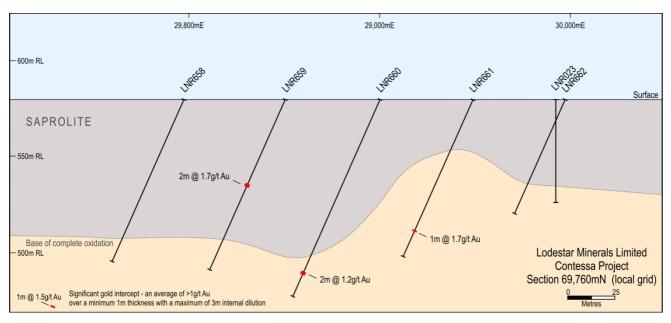


Figure 5 Contessa Prospect Drill Section 69760N

Bill Clayton

Managing Director

Contact:

Company
Bill Clayton
Lodestar Minerals Limited
Tel: +61 8 9481 5455

Media

Colin Hay Professional Public Relations

Tel: +61 9388 0944

Background

The Neds Creek tenements extend over 830 square kilometres of the eastern Yerrida Basin, 170 kilometres north east of Meekatharra and overlie the western extension of the Archaean Baumgarten Greenstone Belt on the southern margin of the Marymia Inlier, 20 kilometres to the south of the Plutonic Well Greenstone Belt that hosts the Plutonic and Marymia gold deposits (>4.7Moz Au produced).

Competent Person Statement

The information in the report to which this statement is attached that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Bill Clayton, a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Clayton is Managing Director and a full-time employee of the Company. Bill Clayton has sufficient experience that is relevant to the style of mineralisation and the type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Bill Clayton consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

About Lodestar Minerals

Lodestar Minerals Limited is a Perth-based explorer with projects in the Peak Hill and Kimberley regions of Western Australia. The Peak Hill-Doolgunna project forms the core of Lodestar's project portfolio and represents a strategic landholding of 2300 square kilometres covering 120 kilometres of the Jenkin Thrust Belt, a regional fault system that is adjacent to the DeGrussa Cu-Au deposit. Lodestar believes the region has potential to host base metal deposit within Proterozoic basin sediments, and lode gold deposits within adjacent Archaean greenstone sequences. Lodestar is embarking on an aggressive exploration program to assess the potential of these under-explored north Murchison base metal and gold opportunities.

Page | 7

Table 2 Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure 	 Aircore drill holes from the follow-up programme were sampled at 1m intervals from a cyclone on the rig. From 0 to 40 metres, samples submitted for assays were composited to 5 metre samples. From 40 metres to end of hole the individual 1 metre samples were submitted for assay.
	sample representivity and the appropriate calibration of any measurement tools or systems used.	 Hole locations are fixed using a GPS. Samples are logged and ground conditions that impact sample recoveries are recorded.
•	• Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is source and that has inherent	 Surface rock chip samples are collected as nominal 2 kilogram samples. Samples are dried, crushed and pulverised to 90% passing 75 microns. A 40 gram sub- sample is digested in aqua regia and gold is determined by ICP-MS. Base metal elements are determined from the same solution by ICP-MS or ICP- OES.
	such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Sample results reported in Table 1 and Schedule 1 used the sampling protocol described below. Samples from 0 to 40 metres were collected as 5 metre composites by scooping from the bagged 1 metre samples using a PVC spear. Below 40m, the 1 metre intervals were riffle split to produce a 2.5 kg sample. Approximately 2.5kg of material was dried, crushed pulverised and split to produce a 40g charge for aqua regia digest for 5m composite samples and fire assay and ICP-OES determination of gold for 1m samples.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Aircore drilling technique using a 2.5" blade or hammer bit
Drill sample	 Method of recording and assessing core and chip sample recoveries and results assessed. 	Sample recoveries and wet samples were monitored and included in Lodestar's drill hole database.
recovery	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Aircore & RAB drilling of wet samples is avoided by drilling practices, but some wet samples were nevertheless encountered (see below). Drill sampling equipment was cleaned regularly to minimise contamination.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Lodestar monitors the distribution of high grade gold and sample recoveries.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	Chips samples were routinely geologically logged. The drilling and sampling methods used were exploration methods and not intended to support Mineral Resource estimation.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the 	 Logging is qualitative in nature. All aircore samples were geologically logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Aircore samples were recovered from the drill hole via a cyclone at 1 metre intervals. This sample was then riffle split into a bagged 2kg sub-sample and a residual sample which was placed in a plastic bag on the ground in sequence. Wet samples were collected in a bag beneath the cyclone and placed in a hole in the ground in sequence to dry. When dry, a scoop of material was removed to submit with the composite or 1m samples. Surface samples were collected as nominal 2kg samples The samples are stored in pre-numbered bags and submitted to UltraTrace Laboratories for sample preparation and assay. Field duplicates are regularly submitted with the samples. Sample preparation involved drying the whole sample, crushing and pulverising to 90% passing -75 microns. The sample was split with a rotary sample divider to obtain a 40 gram charge.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 For 5m composite samples a nominal 40 gram charge is digested with aqua regia and gold determined by ICP-MS. This is a partial digest although it is extremely efficient for the extraction of gold. The 1m samples were analysed by fire assay and ICP-OES finish. Base metals were analysed from the aqua regia solution by ICP-AES and ICP-MS. No geophysical tools were used to determine any element concentrations. Laboratory QAQC involves the use of internal laboratory standards and replicate samples. Lodestar's certified reference standards and field duplicates were inserted throughout the programme. Results indicate that sample assay values are accurate and repeatable.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. 	 Significant intersections have been validated and reviewed independently by the Company's consulting geologist.
	The use of twinned holes.	No twinned holes have been completed.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Field and laboratory data were collected electronically and entered into a relational database. Data collection protocols are recorded in Lodestar's operation manual.
	Discuss any adjustment to assay data.	There has been no adjustment to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations 	 Drill hole locations are fixed by handheld GPS, Differential GPS was used to record collars within mineralised zones. Accuracy is +/-5 metres or less.
	used in Mineral Resource estimation.Specification of the grid system used.	 Drill hole coordinates were recorded in MGA94 Zone 50 grid.
	Quality and adequacy of topographic control.	 The topography within prospect areas is generally flat; RL's are averaged from GPS readings of individual drill holes in each area.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. 	 Drill holes are spaced between 20 metres to 90 metres on section and average 80metres (60m to 90m) between sections at Contessa. The data is insufficient
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the 	to establish continuity for Mineral Resource estimation.
	Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 1 metre samples above 40m downhole depth have been composited to 5 metre samples for assay.
	 Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 The aircore drilling method does not provide structural information and the orientation of the underlying geology has not been established. Drilling is oriented perpendicular to the strike of the lithology as
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	determined from interpretation of aeromagnetic data and local mapping.
Sample security	The measures taken to ensure sample security.	 Samples were stored at Lodestar's exploration camp under supervision prior to dispatch by licenced courier service (TOLL IPEC) or Lodestar staff to UltraTrace Laboratories.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been carried out.

Table 2 Section 2 - Reporting of Exploration Results

Criteria	Commentary
Mineral tenement and land tenure status	 Contessa is located on E52/2456, a tenement purchased by Lodestar Minerals Limited from Glenn Money. Lodestar has applied for the tenement to be transferred and the application is before the Office of State Revenue.
	• E52/2456 expires on 16/09/2016
Exploration done by other parties	 Exploration commenced at McDonald Well in the late 1960's, WMC explored for Zambian Copper Belt style mineralisation and completed regional geological mapping and sampling, followed by minor percussion drilling. CRA Exploration completed regional mapping and auger sampling, also at McDonald Well. No significant anomalies were identified on the tenements. Minor exploration drilling by Barrick and CRA Exploration east and south of Contessa intersected ultramafic lithologies, confirming the extent of the greenstone sequence in this area. There has been no material exploration by other parties over Contessa.
Geology	 The geology of the project area comprises the northern margin of the Proterozoic Yerrida Basin. The geology forms two discrete units;
	 Proterozoic sediments of the Yerrida Basin that are prospective for sediment-hosted copper and base metal mineralisation in black shale and carbonate sequences, with evidence of secondary and primary copper mineralisation in the Thaduna district.
	Archaean basement rocks on the northern margin of the Yerrida Basin. The basement-sediment contact trends east-west and Lodestar's exploration has recently identified extensive gold anomalism adjacent to this contact. The basement consists of granite and fringing mafic-ultramafic rocks that are not widely exposed at surface. The maficultramafic rocks and the adjacent granite host the gold mineralisation and are thought to be Archaean in age and similar to the sequences that host the lode gold deposits in the Plutonic and Baumgarten greenstone belts.
Drill hole information	Tabulated data is provided in Schedule 1, attached.
Data aggregation methods	 Assay data are reported as 5 metre composite samples or the average of 1 metre assay results. No cutting of high grades has been applied.
Relationship between mineralisation widths and intercept lengths	• Drilling is oriented -60 degrees towards 310 degrees at Contessa, perpendicular to the interpreted strike of the host sequence. The mineralisation forms a sub-horizontal body on section, close to the interface between partly weathered and completely weathered rock. This flat-lying orientation is believed to be a result of gold being mobilised by weathering processes and precipitated near the base of oxidation. Intercept widths or apparent thickness may be less than (~90%) the true thickness of the mineralisation.
Diagrams	See Figures 2 to 5, the current interpretation is based on drilling on nominal 80 metre sections.
Balanced reporting	All drill holes and intercepts are reported in Schedule 1.
Other substantive exploration data	None to report.
Further Work	 Extensive zones of anomalous gold greater than 100ppb (0.1g/t) have been identified in drilling at Contessa. The mineralisation remains open at depth and along strike along the granite contact. Further drilling is planned, initially to extend the aircore drilling south west of the current grid and to test bedrock targets beneath the highest grade intercepts.

Page | 11

SCHEDULE 1

Hole	Easting	Northing	Depth	Azimuth	Dip	From	То	Au (ppb)
LNR649	787984	7192286	104	310	-60	60	61	138
						62	63	131
						63	64	250
						64	65	420
						65	66	537
						66	67	609
						67	68	443
						83	84	1490
						89	90	116
						99	100	112
LNR650	788021	7192252	98	310	-60	48	49	129
						49	50	1620
						50	51	176
						51	52	189
						52	53	178
						53	54	2630
						54	55	750
						66	67	109
						67	68	234
						75	76	115
						76	77	1210
						79	80	1070
						80	81	943
						82	83	946
						83	84	591
						84	85	736
						85	86	318
						92	93	193
						95	96	805
						96	97	206
						97	98	168
LNR651	788057	7192222	107	310	-60	48	49	311
						51	52	2620
						52	53	234
						53	54	155
						54	55	1990
						55	56	319
						60	61	8010
						61	62	2660
						62	63	128
						63	64	1690
						64	65	360

Hole	Easting	Northing	Depth	Azimuth	Dip	From	То	Au (ppb)
						71	72	219
						74	75	112
						76	77	102
						88	89	120
						90	91	1090
						93	94	660
						94	95	113
						98	99	571
						99	100	3810
						100	101	843
						101	102	107
						103	104	221
						104	105	103
LNR652	788096	7192188	86	310	-60	0	5	118
						30	35	157
						59	60	435
						65	66	214
						66	67	177
						67	68	372
						68	69	1550
						69	70	351
						70	71	443
						71	72	700
						72	73	751
						73	74	501
						74	75	182
						77	78	119
LNR653	788134	7192158	81	310	-60	71	72	109
						80	81	223
LNR654	788174	7192120	67	310	-60	40	67	assays pending
LNR655	788150	7192274	101	310	-60	50	51	142
						53	54	110
						65	66	122
						66	67	174
						67	68	423
						72	73	759
						73	74	244
						74	75	159
						97	98	238
LNR656	788185	7192242	98	310	-60	35	40	164
						40	41	1010
						41	42	2150
						42	43	193
						43	44	4090

Hole	Easting	Northing	Depth	Azimuth	Dip	From	То	Au (ppb)
						44	45	1160
						46	47	362
						47	48	5640
						48	49	8170
						49	50	1740
						50	51	5180
						51	52	523
						52	53	120
						53	54	8990
						54	55	3500
						55	56	5150
						56	57	142
						57	58	452
						58	59	271
						59	60	13100
						60	61	1190
						61	62	951
						62	63	150
						85	86	102
						86	87	760
						87	88	652
						88	89	190
						92	93	226
						93	94	152
LNR657	788223	7192216	89	310	-60	25	30	158
						41	42	119
						45	46	233
						47	48	130
						49	50	113
						53	54	710
						54	55	130
						56	57	540
						58	59	172
LNR658	788122	7192375	98	310	-60	0	98	no significant result
LNR659	788162	7192340	103	310	-60	51	52	2080
						52	53	1300
						54	55	128
						55	56	604
						56	57	171
						61	62	292
						77	78	171
						78	79	246
						82	83	515
						83	84	272

Hole Easting Northing Depth Azimuth Dip From To 92 93 94 95 96 97 97 98 98 99 LNR660 788200 7192308 119 310 -60 69 70 70 71 72 73	Au (ppb) 146 101 153 160 155 177 112 403 101 553
94 95 96 97 98 97 98 99 LNR660 788200 7192308 119 310 -60 69 70 70 71	101 153 160 155 177 112 403 101
96 97 97 98 97 98 98 99 LNR660 788200 7192308 119 310 -60 69 70 70 71	153 160 155 177 112 403 101
97 98 98 99	160 155 177 112 403 101
LNR660 788200 7192308 119 310 -60 69 70 71	155 177 112 403 101
LNR660 788200 7192308 119 310 -60 69 70 70 71	177 112 403 101
70 71	112 403 101
	403 101
12 13	101
73 74	
86 87	555
87 88	161
98 99	147
99 100	122
102 103	489
103 104	585
104 105	1190
105 106	1230
106 107	588
110 111	118
111 112	402
112 113	968
113 114	160
114 115	337
115 116	306
116 117	647
117 118	661
118 119	772
LNR661 788241 7192281 95 310 -60 35 40	420
45 46	966
48 49	402
51 52	742
52 53	226
78 79	270
79 80	1670
80 81	206
89 90	222
LNR662 788274 7192245 69 310 -60 10 15	111
44 45	661
LNR663 788248 7192373 108 310 -60 57 58	138
LNR664 788294 7192334 86 310 -60 40 41	103
64 65	181
LNR665 788375 7192373 77 310 -60 43 44	766
45 46	173
46 47	107

Hole	Easting	Northing	Depth	Azimuth	Dip	From	То	Au (ppb)
LNR666	788420	7192337	61	310	-60	44	45	237
						47	48	165
						48	49	162
LNR667	788456	7192303	80	310	-60	0	5	126
						5	10	292
						10	15	262
						45	46	692
						46	47	4070
						48	49	235
LNR668	788492	7192270	69	310	-60	5	10	162
						51	52	290
LNR669	788532	7192240	83	310	-60	48	49	167
						49	50	159
						57	58	295
						63	64	156
						75	76	200
LNR670	788314	7192531	116	310	-60	0	116	no significant result
LNR671	788376	7192479	96	310	-60	0	96	no significant result
LNR672	788452	7192417	78	310	-60	66	67	271
						67	68	844
						68	69	521
						69	70	969
						70	71	269
						71	72	924
						72	73	1030
						73	74	580
						74	75	261
						75	76	285
						76	77	207
						77	78	719
LNR673	788485	7192386	74	310	-60	0	5	244
						5	10	178
						10	15	107
						43	44	275
						63	64	2220
						64	65	457
						67	68	422
						68	69	2610
						69	70	811
						70	71	134
						72	73	112
LNR674	788526	7192350	97	310	-60	0	5	256
						5	10	140
						35	40	272

Hole	Easting	Northing	Depth	Azimuth	Dip	From	То	Au (ppb)
			<u> </u>			60	61	625
						65	66	124
						68	69	10600
						69	70	3880
						70	71	4310
						71	72	567
						72	73	337
						73	74	357
						74	75	173
						75	76	128
						85	86	342
						86	87	468
						87	88	100
						88	89	188
						93	94	154
						95	96	133
LNR675	788572	7192311	89	310	-60	5	10	259
						64	65	624
						65	66	330
						66	67	363
						67	68	180
						68	69	167
						71	72	848
						72	73	683
						73	74	864
						74	75	191
						75	76	515
						76	77	134
						79	80	172
LNR676	788481	7192494	67	310	-60	47	48	109
						52	53	191
						53	54	117
LNR677	788513	7192461	53	310	-70	0	53	no significant result
LNR678	788560	7192425	64	310	-60	0	64	no significant result
LNR679	788598	7192392	67	310	-60	0	67	no significant result
LNR680	788633	7192359	66	310	-60	52	53	425
						55	56	180
						56	57	212
						58	59	149
						59	60	533
						60	61	180